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Overall goal

Reduce
temperature
of the charge
air.
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Figure 4: Inset of a schematic of a charge air cooler in an IC engine (not to scale) [10]
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Figure 1: Some heat exchangers at Vestas-aircoil

* Complex engineering systems.
* Many variables affecting performance.
e Continuous variables. (size dimensions e.g., diameters, length, heights, widths etc)

* Discrete variables. (humber of tubes, number of fins, number of plates, etc)
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< I

1. Why use corrugated tubes? (Corrugated t_ufbe) ,
Or are they better than smooth tubes?
2. Does including a frequency constraint

make a difference?

J—u

\/

Y

(Smooth tube)

(1) (2)
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- Materials choice as design variables.

Al, Cu, SS, CuNi10

- Mixed integer problem definition.

- Corrugated tubes in the context of whole heat
exchangers.

- Inclusion of vibration model.
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Figure 5: A corrugated tube for heat exchanger.

- Scope
- Only surface alterations to the tubes. (no inserts)
- Material used for corrugated tube is same as smooth tube.
(No cutting or material removal process assumed)
- Vibration model aims to find lowest natural frequencies.
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Thermal model
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Vibration model — Making the analysis multi-disciplinary.

Design variables

- Continuous variables - Discrete variables
Length 1 O 2.5 N_row 26 HOHHHH- 32
E_;DEVE depth(e) 8-22 O— g-gg N_col 17 HHHOH- 34
itch (p) ' ~ ‘ N_plates 0 +—O—+—+ 4
Fins/m 373 HHHOH- 561
Fin material 1 —0O—~+ 3
Tube material 1 | —O 3
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Vibration model

40 X 30 CuNil0 Tubes

Cu Fins, 2mm distance between fins

EK2334 Configuration

Water weight NOT included

1.2 m
freq _ i EtubeltubeB
bending T A b A I I I
HeubeA + Ufin T END-L sP1 END-R
L
2000
- Eype Young’s modulus (of tube material) » Bending Type
_ Twisting T
- I;ype Second moment of Area of tube 15004 X TWISHNG Type ¢« X  e—X
[ ]
. N
- MHtube » Mfin area densities = 1000 - . y . »
- Lis length of section £ 3
. . -
- bis tube pitch 500 1 . X
- A, B are constants. ol ¢ %
2 4 6 8 10
Mode Number
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Constraints for CAC optimization problem
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Constraints for CAC optimization problem

- Pressure

Atul Singh
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Pressure drop < 2.5 kPa
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Constraints for CAC optimization problem

- Pressure
- Size
Tube side
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Constraints for CAC optimization problem

-  Pressure
- Size
- Weight Tube side
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Constraints for CAC optimization problem

Q > 4120kW

- Pressure 888
- Size
- Weight Tube side
- Power dissipation
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Constraints for CAC optimization problem

- Pressure

- Size (c

- Weight Tube side
- Power dissipation

- Natural frequency

Length 4
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15t bending mode > 100 Hz
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Formal definition

- Minimize COStoge = COStrypes T COStrins + COStpqtes
- such that —
- Weight < 600Kg —_—
- Pressure drop (air side) < 2.5 kPa —
- Pressure drop (tube side) < 80 kPa
- Horizontal length < 1.054 m 8 v

- Vertical length < 0.8 m
- Reynolds number < 60000
- Velocity in tubes < 1.5 m/s

k_J —
- Dissipation > 4120 kW U U
- Bending frequency > 100 Hz

NNNNNN

- *Single objective, multi-disciplinary, mixed-variable, constrained optimization problem.

- Solved using NSGA-II, Population size of 1000, 800 gen, 100 offsprings.
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1. Why use corrugated tubes?
Or are they better than smooth tubes?
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1. Why use corrugated tubes?
Or are they better than smooth tubes?

»  Yes!!, but at an added cost. [9]
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. : _ Smooth tube CAC
2. Does including a frequency constraint

make a difference?

U

Atul Singh 6-Oct-22




Results

UNIVERSITY OF

Southampton

2. Does including a frequency constraint

make a difference?
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Smooth tube CAC

(c

-33% ($)
-18% (kg)
J-u
+7.5% (S)
+9% (kg)
Hiy ¥/

Smooth tube CAC
with vibration

@ Cheaper/Lighter

Corrugated tube CAC

Sh=s

Costlier/Heavier
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Smooth tube CAC Corrugated tube CAC
2. Does including a frequency constraint
make a difference?
-33% ($)
-18% (kg)
+7.5% ($) +5.2% ($)
+9% (kg) +5% (kg)
(c
-35% ($)
-21% (kg)
I 2 5T Y
Smooth tube CAC Corrugated tube CAC
with vibration with vibration
@ Cheaper/Lighter @ Costlier/Heavier

Atul Singh 6-Oct-22




UNIVERSITY OF

Results Southampton
Smooth tube Smooth tube Corrugated tube  Corrugated tube
Optimum with frequency without frequency  with frequency  without frequency
value of constraint constraint constriant constraint
N 26 26 27 27
Ny 25 25 22 22
Nopass 2 2 2 2
Ve 475 475 474 474
ky Al Al Al Al
k; Cu Cu Cu Cu
*'N'rpiates 2 0 1 0
L; 1.623 1.624 1.44 1.44
he - - 0.06 0.06
hp - - 0.269 0.269
Cost ($) 5871.43 5458.74 3805.61 3617.11

Table 1: Optimum configurations for smooth tube and corrugated tubes, with and without the frequency constraint.

- Plates, required to achieve the 100 Hz frequency constraint, otherwise indiscernible without the frequency constraint.
- Corrugated tubes are of reduced length, to achieve the desired frequency.
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Smooth tube CAC
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Corrugated tube CAC

Non multi-disciplinary approach, '33?’ ($)

misses the 100 Hz requirement. -18% (kg)

Multi-disciplinary approach U 58 =
satisfies the 100Hz critgria, thr‘ough +7.5% ($) +5.2% (%)
a support plate, hence increasing +9% (ke) +5% (kg)

price and weight.

Corrugated tubes provide (‘.

reduction in cost and weight,
-35% ($)

achieved by reduced length and

number of tubes.

-21% (kg)
i ¥/

Smooth tube CAC
with vibration

H-8 g ‘.’)
Corrugated tube CAC
with vibration

@ Cheaper/Lighter @ Costlier/Heavier
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