Impact of corrugated tubes on multi-disciplinary optimization of charge air coolers.

Atul Singh (PhD student, UoS)

Co-Authors:

Dr David Toal (UoS), Dr Edward Richardson (UoS),

Dr Claus Ibsen (Vestas Aircoil),

Kevin Jose (UoS), Dr Atul Bhaskar(UoS)

Southampton

MSCA Innovative-Training Network, H2020

This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 765636.

Atul Singh

- 1. Introduction
- 2. Motivation
- 3. Approach
 - Multi-disciplinary approach with vibrations.
- 4. Results
 - Optimization
- 5. Conclusions.

Introduction

Introduction

Figure 4: Inset of a schematic of a charge air cooler in an IC engine (not to scale) [10]

Introduction

Figure 1: Some heat exchangers at Vestas-aircoil

- Complex engineering systems.
- Many variables affecting performance.
- Continuous variables. (size dimensions e.g., diameters, length, heights, widths etc)
- Discrete variables. (number of tubes, number of fins, number of plates, etc)

Motivation

Motivation

Novelties

- Materials choice as design variables.

- Mixed integer problem definition.

- Corrugated tubes in the context of whole heat exchangers.

а

- Inclusion of vibration model.

Al, Cu, SS, CuNi10

Figure 5: A corrugated tube for heat exchanger.

- Scope
 - Only surface alterations to the tubes. (no inserts)
 - Material used for corrugated tube is same as smooth tube.
 (No cutting or material removal process assumed)
 - Vibration model aims to find lowest natural frequencies.

Southampton

Thermal model

F calc_thermal_model	F Nut_4k
⊢ ✗ Initial conditions	F Nut_tro
🕂 🔀 fin configurations	F Nut_to
- 😕 Design parameter declarations	Gzt
- 😕 Material properties	🛛 🔤 🔽 🕞 beta_t
Zerived constants for tube and fins	🛛 🔤 🕂 🕞 Grt
✓ ✗ Mean temperature estimation	I F Nut_II
│	Nut_i
F mu_t	F Fpt
F rho_water	I F Nut_t
📙 🖻 rhot	I F Nut
F Pra	🖵 F ht
F ka	🗸 🏏 Y Fin side htc
F mu_a	📙 📙 🖵 🖪 Rea
F rhoa	🗸 🏏 🏹 Fin dimensions
– F Сра	F jsw
– F Cp25	F jhtfs
F Cp44	 F ja
F Cp120	<mark>- F</mark> ha1
F Cpt	📔 📙 🖻 ma
- F Pr47	📔 📙 🖻 Bia
– F Pr120	F bi
F Prt	E eta_f
F tam	E eta_o
E Ca	│
	Vestas-quantities
F Ct	F St
F ttm	F ha1_vestas
F Ret	F A_vestas
F ft_4k	Fif
F Nut_4k	F Nfin

nts

Vibration model – Making the analysis multi-disciplinary.

Design variables

Continuous variables -

Length	1		<i>—</i> О-	2.5
Groove depth(e)	0.02	_0_		0.06
Pitch (p)	0.18		0—	0.27

- Discr	ete va	riables
---------	--------	---------

N_row	26 + 0 + 1 + 1 + 1 + 1 + 1 + 32
N_col	17 -+++++ O++- 34
N_plates	0 + 0 + 4
Fins/m	373 561
Fin material	1 +
Tube material	1 + + - • 3

Vibration model

$$freq_{bending} = \left(\frac{1}{2\pi}\right) \sqrt{\left(\frac{E_{tube}I_{tube}B}{\mu_{tube}A + \mu_{fin}\frac{b}{L}A\right)}}$$

- *E_{tube}* Young's modulus (of tube material)
- *I_{tube}* Second moment of Area of tube
- μ_{tube} , μ_{fin} area densities
- L is length of section
- b is tube pitch
- A, B are constants.

Constraints for CAC optimization problem

Constraints for CAC optimization problem

Constraints for CAC optimization problem

- Pressure
- Size

Constraints for CAC optimization problem

- Pressure
- Size
- Weight

Weight (Tubes + Fins + Plates) < 600 kg

Constraints for CAC optimization problem

- Pressure
- Size
- Weight
- Power dissipation

Constraints for CAC optimization problem

- Pressure
- Size
- Weight
- Power dissipation
- Natural frequency

1st bending mode > 100 Hz

Problem

Formal definition

- Minimize $cost_{cac} = cost_{tubes} + cost_{fins} + cost_{plates}$
- such that
- Weight < 600Kg
- Pressure drop (air side) < 2.5 kPa
- Pressure drop (tube side) < 80 kPa
- Horizontal length < 1.054 m
- Vertical length < 0.8 m
- Reynolds number < 60000
- Velocity in tubes < 1.5 m/s
- Dissipation > 4120 kW
- Bending frequency > 100 Hz
- *Single objective, multi-disciplinary, mixed-variable, constrained optimization problem.
- Solved using NSGA-II, Population size of 1000, 800 gen, 100 offsprings.

1. Why use corrugated tubes?

2. Does including a frequency constraint make a difference?

Smooth tube CAC

Atul Singh

28

6-Oct-22

Southampton

2. Does including a frequency constraint make a difference?

Atul Singh

6-Oct-22

	Smooth tube	Smooth tube	Corrugated tube	Corrugated tube
Optimum	with frequency	without frequency	with frequency	without frequency
value of	$\operatorname{constraint}$	$\operatorname{constraint}$	$\operatorname{constriant}$	$\operatorname{constraint}$
N_t	26	26	27	27
N_r	25	25	22	22
N_{pass}	2	2	2	2
γ_e	475	475	474	474
k_f	Al	Al	Al	Al
k_t	$\mathbf{C}\mathbf{u}$	\mathbf{Cu}	\mathbf{Cu}	Cu
N_{plates}	2	0	1	0
L_t	1.623	1.624	1.44	1.44
he	-	-	0.06	0.06
hp	-	-	0.269	0.269
Cost (\$)	5871.43	5458.74	3805.61	3617.11

Table 1: Optimum configurations for smooth tube and corrugated tubes, with and without the frequency constraint.

- Plates, required to achieve the 100 Hz frequency constraint, otherwise indiscernible without the frequency constraint.
- Corrugated tubes are of reduced length, to achieve the desired frequency.

Conclusions

Conclusions

- Non multi-disciplinary approach, misses the 100 Hz requirement.
- Multi-disciplinary approach satisfies the 100Hz criteria, through a support plate, hence increasing price and weight.
- Corrugated tubes provide reduction in cost and weight, achieved by reduced length and number of tubes.

- [1] Hærvig, J., Sørensen, K., & Condra, T. J. (2017). On the fully-developed heat transfer enhancing flow field in sinusoidally, spirally corrugated tubes using computational fluid dynamics. *International Journal of Heat and Mass Transfer*, 106, 1051–1062. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.080
- [2] Harleß, A., Franz, E., & Breuer, M. (2017). Heat transfer and friction characteristics of fully developed gas flow in cross-corrugated tubes. International Journal of Heat and Mass Transfer, 107, 1076–1084. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.129
- [3] Kareem, Z. S., Mohd Jaafar, M. N., Lazim, T. M., Abdullah, S., & Abdulwahid, A. F. (2015). Passive heat transfer enhancement review in corrugation. *Experimental Thermal and Fluid Science*, *68*, 22–38. <u>https://doi.org/10.1016/j.expthermflusci.2015.04.012</u>
- [4] Promthaisong, P., Jedsadaratanachai, W., & Eiamsa-ard, S. (2018). Numerical Simulation and Optimization of Enhanced Heat Transfer in Helical Oval Tubes: Effect of Helical Oval Tube Modification, Pitch Ratio, and Depth Ratio. *Heat Transfer Engineering*, 39(19), 1669–1689. <u>https://doi.org/10.1080/01457632.2017.1384281</u>
- [5] Wu, C. C., Chen, C. K., Yang, Y. T., & Huang, K. H. (2018). Numerical simulation of turbulent flow forced convection in a twisted elliptical tube. International Journal of Thermal Sciences, 132(January), 199–208. <u>https://doi.org/10.1016/j.ijthermalsci.2018.05.028</u>
- [6] Xie, S., Liang, Z., Zhang, L., & Wang, Y. (2018). A numerical study on heat transfer enhancement and flow structure in enhanced tube with cross ellipsoidal dimples. *International Journal of Heat and Mass Transfer*, *125*, 434–444. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.04.106
- [7] Zheng, N., Liu, P., Shan, F., Liu, Z., & Liu, W. (2016). Effects of rib arrangements on the flow pattern and heat transfer in an internally ribbed heat exchanger tube. *International Journal of Thermal Sciences*, 101, 93–105. <u>https://doi.org/10.1016/j.ijthermalsci.2015.10.035</u>
- [8] Kathait, P. S., & Patil, A. K. (2014). Thermo-hydraulic performance of a heat exchanger tube with discrete corrugations. *Applied Thermal Engineering*, *66*(1–2), 162–170. https://doi.org/10.1016/j.applthermaleng.2014.01.069
- [9] Andrade, F., Moita, A. S., Nikulin, A., Moreira, A. L. N., & Santos, H. (2019). Experimental investigation on heat transfer and pressure drop of internal flow in corrugated tubes. *International Journal of Heat and Mass Transfer*, 140, 940–955. <u>https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.025</u>
- [10] D. Woodyard, "Pressure Charging," in Pounder's Marine Diesel Engines and Gas Turbines, ch. 7, pp. 173–233, Butterworth-Heinemann publications, 9th ed., 2009.

